Problem 12.7

Again, the *center of mass* and the *center of gravity* are usually the same point, so we need to find the *center of mass* for each body (we can in most cases eyeball this). With that, we can find the *center of mass* for the whole thing.

I've put a dot at the *center of mass* of each object. Taking the coordinate data right off the graph, the *center of mass* calculations are found on the next page.

1.)

$$x_{cg} = \frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}}$$

$$= \frac{(6.00 \text{ kg})(5.50 \text{ m}) + (3.00 \text{ kg})(6.67 \text{ m}) + (5.00 \text{ kg})(-3.50 \text{ m})}{(6.00 \text{ kg}) + (3.00 \text{ kg}) + (5.00 \text{ kg})}$$

$$= 2.54 \text{ m}$$

$$y_{cg} = \frac{\sum_{i} m_{i} y_{i}}{\sum_{i} m_{i}}$$

$$= \frac{(6.00 \text{ kg})(7.00 \text{ m}) + (3.00 \text{ kg})(2.33 \text{ m}) + (5.00 \text{ kg})(3.50 \text{ m})}{(6.00 \text{ kg}) + (3.00 \text{ kg}) + (5.00 \text{ kg})}$$

$$= 4.75 \text{ m}$$